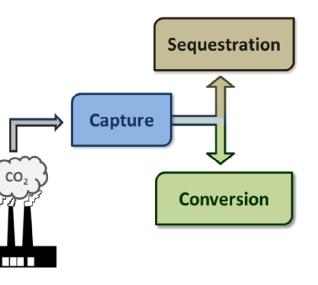
Electrochemical Reduction of CO₂ to Formic Acid Using Gas Diffusion Electrode Technology

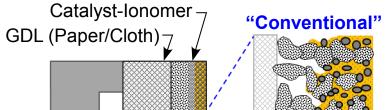

Authors: Brian T Skinn^{1*}, Sujat Sen², Timothy D Hall¹, Fikile R Brushett², E. Jennings Taylor¹

¹ Faraday Technology, Inc., Englewood, OH² Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA *Principal Investigator: BrianSkinn@FaradayTechnology.com, (937) 836-7749

Funding: Department of Energy STTR Contract No. DE-SC0015173, TPOC: John Litynski (John.Litynski@hq.doe.gov)

Problem

• New technologies are needed to provide solutions for conversion of captured CO_2 as part of a multifaceted approach for mitigation and maintenance of greenhouse gas production.


Technical Approach

- Gas diffusion electrode (GDE) based electroreactor for CO₂ conversion to formic acid (FA)
- Tin cathodic catalyst deposited by FARADAYIC[®] ElectroDeposition (ED)
- Commercial mixed-oxide anodic catalyst
- Exploit scalable, low-cost ED fabrication methods and MIT expertise in electrochemical analysis and reactor fabrication

High-Utilization Tin Catalyst via FARADAYIC[®] ElectroDeposition

Current Collector

- Conventional methods use catalyst dispersed in ionomer suspension
 - Significant fraction of catalyst

MPL

"High Utilization"

Electrochemical Testing

- Perform electrolysis at constant half-cell potential and measure:
 - Total response current
 - Formic acid production UV absorbance at 202 nm
- Apparatus Configuration
 - CO₂ flush gas behind GDE
 - Na₂CO₃ + Na₂SO₄ electrolyte (pH ~ 10)
 - H₂/Pt GDE counterelectrode used to reduce total cell potential
- Desired reaction:

$$CO_2 + 2H^+ + 2 e^- \rightarrow HCOOH$$

Pt GDE $CO_2(g)$ $H_2(g) -$ Electrolyte -

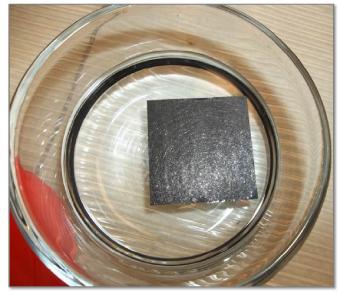
Preliminary Results

- Preliminary FARADAYIC[®] ElectroDeposition (ED) samples show significantly increased total and FA-efficient current densities relative to conventional spray-coating method and literature data
- j_{total} ≥ 275 mA cm⁻² — %FA ≥ 70%

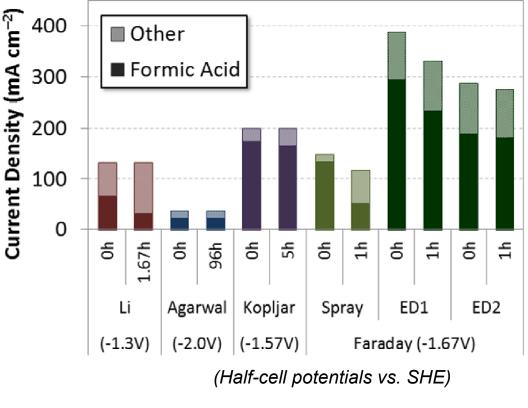
Sn-Plated GDE

- isolated from electrical contact and/or far from gas phase
- FARADAYIC[®] ElectroDeposition intrinsically produces electrically active catalyst = "High Utilization"
 - Smaller mass of applied catalyst, but with significantly enhanced per-mass catalytic efficiency
 - Waveform tuning also enables control over catalyst particle size, microstructure, active surface area, etc.

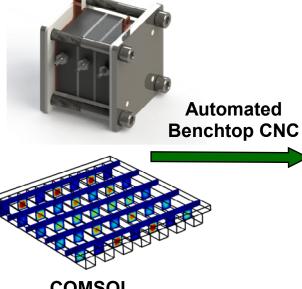
- Ionomer Application
 - Sigracet 39BC gas diffusion layer (GDL) with applied microporous layer (MPL)
 - Float 40mm × 40mm GDL square MPL-side down on ionomer dispersion in isopropanol



Front Side (MPL)


Reverse Side (Bare GDL)

- Sn ElectroDeposition FARADAYIC[®] ElectroCell
 - Part & Holder (Cathode)


- Favorable short-term catalyst durability
- Ongoing optimization Ionomer loading
 - Sn electrocatalyst loading
 - Sn electrocatalyst **ED** parameters
 - GDE (GDL/MPL) parameters

Li and Oloman. J Appl Electrochem 35: 955, 2005 Agarwal et al. ChemSusChem 4: 1301, 2011 Kopljgar et al. J Appl Electrochem 44: 1107, 2014

Alpha-Scale Electroreactor

- Electroreactor design previously developed by MIT for $CO_2 \rightarrow CO$ conversion studies
- COMSOL modeling facilitates rapid design optimization to:
 - Increase energy efficiency
 - Minimize pressure drop
 - Maximize conversion

ElectroReactor

COMSOL **Multiphysics Modeling**

Economic / Scale-Up Analysis

Life Cycle Analysis

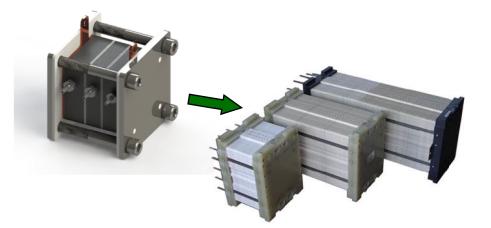
Scale-Up Analysis

• Standard methodologies

SolidWorks 3-D CAD

Sn Sheet (Anode)

FARADAYIC[®] ElectroDeposition Cell



Tin Methanesulfonate Plating Electrolyte

- EPA, DOE/NETL, etc.

 Technology evaluation Market-entry / pre-commercial analysis

